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ABSTRACT. Here we discuss the deficiencies of standard Effective-Medium Approxima-
tion in the application to thin layers and propose the model, which overcomes those prob-
lems for 2-dimensional case. Ellipsometry of layers of gold nanoparticles reveals the dis-
cussed interparticle interactions in such layers.

1. Introduction

The Effective-Medium Approximation (EMA) is a very convenient tool to describe the
electromagnetic response of heterogeneous systems with the nonuniformity on the scale
smaller than the wavelength [1]. In the case of the size of different constituting parts re-
markably bigger than the wavelength, the description of the response should be made on
the base of the consideration of uniform fields inside of different parts and boundary con-
ditions for them. If the size of those parts is comparable with the wavelength, the strong
scattering exists resulting in band-gap materials in the case of coherent scattering on reg-
ular structures. However, if the scale of the nonuniformity is smaller than the wavelength,
EMA is very robust approach, as the alternative exact direct description of fields, currents,
polarization in each element with the account of their interactions is extremely time and re-
source consuming task, which should be made for any particular configuration. So, the aim
of EMA is to describe some averaged response of a nonuniform system of interest taking
into account the distribution of size, shape and dielectric function of constituting parts and
their mutual interactions. The main approach to build such models is based on the Lorentz
cavity concept for the determination of the polarizability of an individual inclusion and
Clausius-Mossotti relation [1]. In such an approach applied for three-dimensional (3D)
situation for the case of regular or random uniform distribution of similar inclusions the
average near-field scattered by nonuniformities at the place of any of them is zero. So the
additional field to the external one at any inclusion is produced by the host medium polar-
ization generated by the scattered far field only. Fluctuations of the distribution would give
the corrections to the standard EMA models like Maxwell-Garnett or Bruggeman ones but
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it is the zeroing of the average near-field, which is the point of the Lorentz cavity con-
cept. The two-dimensional (2D) situation is principally different. Particles or inclusions
are spread only in one plane and the average near-field scattered by closest neighbors is not
zero in this case and both near and far scattered fields contribute to the additional polar-
ization. Moreover, interactions of dipoles directed along and across the plane are different
producing geometrical anisotropy in the optical properties of such a layer. If the average
interaction along the layer is attractive producing red shift of localized resonance, the one
across the layer is repulsive resulting in the blue-shifted resonance [2]. It is the reason why,
in spite of many applications, the standard EMA models are principally deficient in the de-
scription of the optical properties of nonuniform layers. Maxwell-Garnett EMA model,
which, in contrary to the Bruggeman one, saves the localized resonance of the inclusions
in the mixture and its red shift at the rise of the concentration of inclusions, can be used
for the qualitative description of the response of the nonuniform layer for its in-plane ex-
citation. However, with the same constitutive materials, it is impossible to describe by this
model the blue shift of the resonance at the excitation of the system across the layer plane.

2. Formalism

To overcome these problems we developed the model based on the solution of the
Lipman-Schwinger equation for averaged fields and polarizability, which describes the
response for the external field and is the 2D analogue of EMA. The total field E exciting
any element of the system can be written as

Ei(R⃗, ω) = E
(0)
i (R⃗, ω)− a

N
α=1


Vα

dR⃗′Gij(R⃗, R⃗′, ω)χjl(ω)El(R⃗
′, ω) (1)

where E(0) is the external field, k0 = ω/c, G is the Green function of the environment
where our inclusions are deposited and χ is the polarizability of the individual inclusion
[3,4]. The Green function includes all channels of the interactions both direct and indirect
ones like reflected field in the case of particles on a surface. In the later case χ is the
polarizability of the individual inclusion with the account of its self-action by the image
in the surface. This equation after its transformation into 2D Fourier space - so called k-z
representation, and averaging for the uniform distribution of inclusions in the layer may be
resolved for the polarizability as

Xij(k⃗, za, ω) =

(χ̃ij(ω))

−1 − naGji(k⃗, zα, zα, ω)
−1

(2)

In the case of the plane-wave excitation the back Fourier transformation is trivial as such
a field is described by delta function in Fourier space, so after the multiplication of this
expression by the concentration of particles or nonuniformities in the layer we receive the
expression for the averaging polarizability of our layer, which can be used in different tasks
at the determination of the response of the system with such a layer. Thus we receive the 2D
analogue of EMA, which accounts both near- and far-field interactions as well as demon-
strates necessary optical anisotropy and resonance shift [4]. Experimental measurements
were performed by ellipsometry on layers of gold nanoparticles produced by annealing of
gold thermally deposited on glass with the mass thickness between 25 and few nanometers
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Figure 1. A The position of the resonance versus the angle of incidence and the
mass thickness, which increases from N=8 to N=0.

for about 2 hours at 200 C. Spectral ellipsometer of Woollam Co. was used. After anneal-
ing spectra of all films demonstrated well-separated feature corresponding to the localized
resonance of gold nanoparticles. The position of this resonance versus the angle of inci-
dence and the initial mass thickness is exhibited in Fig.1. Clear red shift of the resonance
position with the increasing of the mass thickness and consequently of the interparticle
interaction is visible indicating that we monitor the longitudinal resonance. The transverse
resonance can not be definitely recognized in measured spectra, as the sensitivity to the
elements of the transverse polarizability of thin films is lower than for longitudinal ones.
For ellipsometry this difference is about one order of magnitude.

3. Conclusions

So, we can conclude that we developed the analogue of EMA for 2D case with the
account of all interactions in the system. Ellipsometric investigations of films of nanopar-
ticles exhibit the localized plasmon resonance in such a system and its dependence on the
interparticle interactions.
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